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Abstract—Reducing risks in disaster response is an important 

problem which can be remedied by a mobile robot that performs 

autonomous reconnaissance. The proposed solution involves the 

design of a robot that can localize itself in an unknown 

environment, create a map, and find victims. This is tested in a 

closed environment utilizing a Turtlebot3 and representing 

victims with AprilTags. The Turtlebot is designed to scan data, 

detect AprilTags and estimate poses, while a remote laptop 

workstation handles navigation and planning, SLAM, and 

exploration algorithms. Gmapping and Slam Toolbox were the 

packages experimented with to generate an occupancy grid 

map, and the latter was chosen for better accuracy and 

functionality. For AprilTag detections, averaged pose estimates 

were used with the apriltag_ros package to tackle the problem 

of tags being estimated from too far away and the limited field 

of view of the camera. The design was tested in a Forsyth Hall 

lab with five AprilTags at different heights and positions. All 

tags were found, and a map was generated successfully. It is 

concluded that the proposed system performs well against a 

benchmark using only off-the-shelf components, and that it 

addresses the issue of disaster response with detail and 

accuracy. 

I. INTRODUCTION AND MOTIVATION 

Disaster responses are extremely dangerous, particularly 
entering terrains where no prior intelligence information may 
be available. Autonomous reconnaissance robots are a great 
solution for reducing danger by providing imagery and maps 
of potentially hazardous environments, such as collapsed 
buildings. To address these needs, a reconnaissance system 
has been developed that is capable of exploring a closed 
environment, while generating a map and locating victims.  

This system is using TurtleBot3 Burger for this task. It is 
a compact and customizable mobile robot designed to be used 
with ROS. With its 360° LiDAR, it can perform SLAM and 
navigation to explore the environment. AprilTags are the 
chosen representation for victims due to the simplicity in 
detecting them within an image. A suitable indoor lab is 
chosen as a test environment, where the robot’s sensors can 
reach their full potential. Different solutions were tested on the 
robot to design the optimal reconnaissance system. 

II. PROPOSED SOLUTION 

A. System Construction 

For ease of development, the ROS network is split 

between the Turtlebot and a remote laptop workstation. This 

allowed lightweight and time critical programs to be run 

directly on the Turtlebot while heavier navigation 

calculations could be run on a system with more processing 

power. 

On the Turtlebot side, the hardware drivers for the 

wheels, IMU, LiDAR, and camera were run along with code 

to facilitate AprilTag detection and pose estimation. As each 

of these tasks was rather light-weight, the Turtlebot’s 

processor (a Raspberry Pi 3b) did not act as a bottleneck.  

On the laptop’s end, more intensive tasks were run such 

as the navigation planner, SLAM, and frontier exploration 

algorithms. Move_base Ros node has been utilized [1] for 

motion planning, slam_toolbox [2] for SLAM, and a 

modified explore_lite [3] to designate goals for frontier 

exploration. These combined made up the navigation stack. 

While move_base and the localization component of the 

SLAM algorithm utilize the occupancy grid generated by 

slam_toolbox, an intermediary node modifies that occupancy 

grid with a custom mask before passing it to explore_lite’s 

frontier exploration algorithm. To generate this occupancy 

grid the system utilizes the Turtlebot’s estimated pose in the 

world frame and a camera view model to mask out unseen 

areas from the original occupancy grid mask. The robot’s 

pose is given by SLAM, and the camera view model is 

generated by constraining the LiDAR’s viewing angle and 

max range. The constraints put on the LiDAR were 

determined empirically by testing different angles and 

distances of the AprilTag detection system. With this 

information, the mask is generated by taking the union of 

each incoming transformed camera model and the previous 

mask. This mask is then applied to the original occupancy 

grid such that unoccupied space in the base occupancy grid 

only remains unoccupied if it falls within the regions 

designated by the mask. Occupied space and unexplored 

space remain unchanged. This modified occupancy grid is 

then passed to the frontier exploration algorithm. 

In order to determine the pose of all AprilTags in the 

environment, the system runs the apriltag_ros package [4] 

while the Turtlebot explores. The apriltag_ros package 

analyzes image data from the camera to detect AprilTags, 

estimating and publishing that tag’s pose relative to the 

camera frame. A custom node then receives this pose 

information. This node determines if a pose estimation is 

valid based on distance and deviation from the camera’s z-

axis and calculates the average pose over all previous valid 

pose estimates for the same tag after transforming them to the 

world frame. The average pose for each tag is then sent to 

ROS’ TF tree. 

B. Design Rationale 

Initially, the gmapping SLAM package was used to 

generate the occupancy grid, but later it was switched over to 

Slam Toolbox to address some issues. The gmapping-

generated occupancy grid would occasionally make explore-

lite set inaccessible goals. This would cause the turtlebot to 

stop exploring despite explore_lite being configured to 

choose a new goal if no progress is made for a period of time. 



   

 

   

 

Slam Toolbox does not have this issue and its more complex 

loop closure behavior makes the map more globally accurate. 

Slam Toolbox also provides more configuration and 

parameter options than gmapping. Some examples being the 

ability to change the details of the solver used for loop closure 

and the option to run in a “lifelong” mode designed to operate 

over very large spaces for an extended period of time. These 

options initially caused issues with the performance of the 

SLAM algorithm, such as “lifelong” mode eliminating too 

much information due to similar environmental features and 

generating warped occupancy grids, but after enough 

tweaking produced a superior result. Ultimately, it was found 

that the “online sync” mode of the Slam Toolbox performed 

the best for our purposes. 

If the greedy frontier exploration algorithm from the 

explore_lite package directly utilized the occupancy grid 

generated based on the 360-degree LiDAR, its exploration of 

the environment would only ensure the entire map has been 

seen by the LiDAR. This does not guarantee the camera has 

seen the entire environment and thus risks potentially missing 

AprilTags. However, discarding information from the scan to 

match the camera would severely impact the performance of 

both localization and move_base’s planning algorithm. Thus, 

it is proposed to utilize the aformentioned mask before 

passing the occupancy grid to the exploration algorithm. The 

mask ensures that the exploration algorithm only marks areas 

seen by the camera as explored while not detrimentally 

influencing other parts of the system that utilize the base 

occupancy grid. With this modification, the frontier 

exploration behavior provided by the explore_lite package 

was sufficient. While explore_lite is not optimized to 

maximize the amount of the map seen by the camera, the 

mask ensures that exploration will continue until the camera 

has seen the entire map and the Turtlebot tends to prefer 

moving towards a goal such that the camera is facing forward. 

Therefore, the Turtlebot should eventually see the entire map 

with the camera. 

Additionally, move_base offered all the functionality 

necessary for a path planner. As long as target goals were 

correctly specified and an accurate occupancy grid is 

constructed, move_base would typically behave as intended. 

The proposed system seeks to average the pose estimates 

for each tag instead of just sending the outputs of the 

apriltag_ros package, which addresses a couple major issues. 

The first issue is that upon the system detecting a specific tag 

in an image, the existing package completely overwrites the 

previous pose estimation with the new one found from the 

current image. As a result, each pose estimation of the base 

system only uses the information from a single image to 

evaluate a tag’s pose. Furthermore, the AprilTag 2 algorithm 

used by the package becomes more inaccurate with 

increasing distance and increasing deviation from the 

camera’s central axis [4], especially the latter. This 

compounds the previous issue due to the last detection of a 

tag having an increased likelihood of being when the tag 

leaves the camera’s field of view. Therefore, it seems a better 

approach to average the pose estimates to obtain a more 

accurate evaluation of the pose that wasn’t reliant on data 

from a single image. Furthermore, an additional design 

approach was adopted where the system discards any pose 

estimates that fell outside the range of optimal measurements 

that has been pre-defined. 
 

III. RESULTS 

A. Testing Environment 

 

Fig  1. View of the testing environment from the Turtlebot 

A good design also requires an appropriate test to show 
whether the design is actually working with a great level of 
accuracy.  A mechanical engineering lab was used to create a 
test environment for the Turtlebot. The size of the 
configuration space was around 40 ft by 20 ft and contained 3 
big tables and two trash cans as obstacles. These obstacles 
were kept in the middle of the lab with a good amount of 
vacant spaces between them and other obstacles were kept 
along the walls of the lab.  A total of six AprilTags with 
different ID numbers were used to simulate disaster victims. 
Five AprilTags were placed on the walls around the lab, and 
one was stuck on one of the obstacles. The AprilTags were 
placed at different heights ranging from 10 inches to 20 inches 
from bottom of wall. To make the test environment more 
realistic, one AprilTag was placed on the wall and the line of 
sight to the tag was obstructed by a trash can placed just 1 foot 
away from the tag, while another AprilTag was placed under 
one of the tables and stuck near the leg of the table.  

B. Occupancy Grid Map 

To determine the effectiveness of this system, a 

benchmark analysis was performed between a system created 

from only off-the-shelf components and our modified system. 

The off-the-shelf system refers to the system which uses 

gmapping and explore_lite as configured by the Turtlebot3 

SLAM package and the base apriltag_ros package. The 

modified system is using SLAM Toolbox instead of 

gmapping, a masked occupancy grid to feed into explore_lite 

for frontier exploration, and a custom node to average 

AprilTag detections. 

The gmapping-generated occupancy grid map (shown in 

Fig 2) has marked some spaces behind walls as both 

unoccupied space and on a frontier which explore-lite would 

potentially set as a goal, even though it is impossible for 

move_base to navigate to that space. This often caused the 

Turtlebot to stop exploring despite explore-lite being 

configured to choose a new goal if no progress is made for 30 

seconds. Also, the features in the map are not super clear and 

shadowed areas can be seen where the Turtlebot’s camera has 

not viewed. On other hand, Slam Toolbox creates much more 

defined wall boundaries, and its more complex loop closure 



   

 

   

 

behavior makes the map more accurate as shown in Fig 3. 

The features in the map look clearer with more detailed 

definitions of their boundaries. There were also few shadow 

spots which shows the modified system explored all the 

spaces present in the test environment. The few spots in 

shadow would have been explored with more time, as shown 

by the Turtlebot navigating to one in Fig 3. 

 

 
Fig  2. Map generated with off-the-shelves configuration 

 
Fig  3. Map with tuned SLAM and frontier exploration 

C. Detected AprilTags 

The off-the-shelf system uses the base level apriltag_ros 

package to detect AprilTags, whereas the modified system 

additionally performs averaging of the detected pose 

estimates to increase the accuracy of the pose on the 

occupancy grid map. It can be seen on Fig 2 that some 

AprilTag poses are marked out of the map, and some poses 

are marked far off of the real position in the test environment. 

However, the occupancy grid map generated by the modified 

system in Fig 3 shows a near-perfect detection of all the 

AprilTags with their poses on the map. 

IV. CONCLUSION 

Disaster response scenarios present a challenge in which 
responders may have to endanger themselves to locate 
victims.  This is where an autonomous system becomes very 
useful, as information can be gathered about an environment 
without endangering rescue teams.  Our proposed system uses 
a Turtlebot3 Burger equipped with a camera and LiDAR along 
with software components used for exploration, SLAM, 
navigation, and detection of victims.  The system used SLAM 

Toolbox for SLAM operations, explore_lite for frontier 
exploration, move_base for navigation, and apriltag_ros for 
AprilTag detection.  The system also used custom 
configurations and software to better adapt the system to the 
task at hand (e.g., the agglomeration of AprilTag poses or the 
generation of a  masked occupancy grid map).  In the end, the 
proposed system does very well against the benchmark 
created using only off-the-shelf components (i.e., no custom 
configurations or software).  The proposed system creates a 
more accurate map of the environment and estimates the poses 
of “victims” more accurately as well.  In all, the proposed 
system would be a valuable asset in a search and rescue 
scenario. 

V. FUTURE WORK 

The modified design worked very well in exploring a 

simulated lab space and detecting AprilTags.  However, the 

system design could still be further refined to more accurately 

locate and pinpoint victims (AprilTags).  The main idea that 

was proposed to accomplish this was to design a way for the 

robot to orient itself in a more optimal position, or a series of 

optimal positions, that would allow for it to better record the 

pose of the AprilTag.   

As the system stands, the robot will search the 

environment and attempt to scan the whole map with its 

camera.  This ensures that the robot sees everything in the 

environment.  However, this does not ensure that the robot 

will have been in an optimal position to record the pose of an 

AprilTag; it just ensures that it has seen every AprilTag at 

least once.  

The proposed solution to this problem is to create an 

intermediary node that would listen to explore_lite and 

move_base and forward the proper messages to either node 

(e.g, goals, results, etc).  If no AprilTag has been seen, goals 

from explore_lite will continue to be sent to move_base and 

the system will persist as if nothing had changed.  Once an 

AprilTag is detected from the camera, however, the node 

would determine optimal positions for viewing and recording 

the location of the AprilTag.  It would then stop sending goals 

from explore_lite to move_base and instead send move_base 

the optimal positions as goals.  It would continue to do this 

until there are no more entries in its queue of optimal 

positions. Lastly, it would mark the AprilTag as fully 

explored so that it will know it does not need to explore it 

again the next time it sees the tag.  After all of this, the node 

would resume communication between explore_lite and 

move_base until it sees another tag or finishes exploring the 

environment.  

This solution would allow for a more accurate recording 

of AprilTag locations.  However, as the system stands, the 

robot will likely find itself in many valid locations to record 

the AprilTag, and it will agglomerate all of the recordings, so 

it will already get a decently accurate recording of the 

location of the AprilTag.  This solution would become useful 

if the robot happens to see an AprilTag from far away and 

never needs to move closer to it in order to complete its 

exploration.  With the proposed solution, it will actively try 

to get a better reading regardless of if it has explored that 

portion of the environment or not. 
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