

Autonomous Robot Reconnaissance in Simulated

Disaster Environment

Christian Burwell
burwell.c@northeastern.edu

Bibek Gupta
gupta.bi@northeastern.edu

Shaun Gentilin
gentilin.s@northeastern.edu

Ruiqi Zhang
zhang.ruiqi@northeasten.edu

Robert Sylvia
sylvia.r@northeastern.edu

Abstract—Reducing risks in disaster response is an important

problem which can be remedied by a mobile robot that performs

autonomous reconnaissance. The proposed solution involves the

design of a robot that can localize itself in an unknown

environment, create a map, and find victims. This is tested in a

closed environment utilizing a Turtlebot3 and representing

victims with AprilTags. The Turtlebot is designed to scan data,

detect AprilTags and estimate poses, while a remote laptop

workstation handles navigation and planning, SLAM, and

exploration algorithms. Gmapping and Slam Toolbox were the

packages experimented with to generate an occupancy grid

map, and the latter was chosen for better accuracy and

functionality. For AprilTag detections, averaged pose estimates

were used with the apriltag_ros package to tackle the problem

of tags being estimated from too far away and the limited field

of view of the camera. The design was tested in a Forsyth Hall

lab with five AprilTags at different heights and positions. All

tags were found, and a map was generated successfully. It is

concluded that the proposed system performs well against a

benchmark using only off-the-shelf components, and that it

addresses the issue of disaster response with detail and

accuracy.

I. INTRODUCTION AND MOTIVATION

Disaster responses are extremely dangerous, particularly
entering terrains where no prior intelligence information may
be available. Autonomous reconnaissance robots are a great
solution for reducing danger by providing imagery and maps
of potentially hazardous environments, such as collapsed
buildings. To address these needs, a reconnaissance system
has been developed that is capable of exploring a closed
environment, while generating a map and locating victims.

This system is using TurtleBot3 Burger for this task. It is
a compact and customizable mobile robot designed to be used
with ROS. With its 360° LiDAR, it can perform SLAM and
navigation to explore the environment. AprilTags are the
chosen representation for victims due to the simplicity in
detecting them within an image. A suitable indoor lab is
chosen as a test environment, where the robot’s sensors can
reach their full potential. Different solutions were tested on the
robot to design the optimal reconnaissance system.

II. PROPOSED SOLUTION

A. System Construction

For ease of development, the ROS network is split

between the Turtlebot and a remote laptop workstation. This

allowed lightweight and time critical programs to be run

directly on the Turtlebot while heavier navigation

calculations could be run on a system with more processing

power.

On the Turtlebot side, the hardware drivers for the

wheels, IMU, LiDAR, and camera were run along with code

to facilitate AprilTag detection and pose estimation. As each

of these tasks was rather light-weight, the Turtlebot’s

processor (a Raspberry Pi 3b) did not act as a bottleneck.

On the laptop’s end, more intensive tasks were run such

as the navigation planner, SLAM, and frontier exploration

algorithms. Move_base Ros node has been utilized [1] for

motion planning, slam_toolbox [2] for SLAM, and a

modified explore_lite [3] to designate goals for frontier

exploration. These combined made up the navigation stack.

While move_base and the localization component of the

SLAM algorithm utilize the occupancy grid generated by

slam_toolbox, an intermediary node modifies that occupancy

grid with a custom mask before passing it to explore_lite’s

frontier exploration algorithm. To generate this occupancy

grid the system utilizes the Turtlebot’s estimated pose in the

world frame and a camera view model to mask out unseen

areas from the original occupancy grid mask. The robot’s

pose is given by SLAM, and the camera view model is

generated by constraining the LiDAR’s viewing angle and

max range. The constraints put on the LiDAR were

determined empirically by testing different angles and

distances of the AprilTag detection system. With this

information, the mask is generated by taking the union of

each incoming transformed camera model and the previous

mask. This mask is then applied to the original occupancy

grid such that unoccupied space in the base occupancy grid

only remains unoccupied if it falls within the regions

designated by the mask. Occupied space and unexplored

space remain unchanged. This modified occupancy grid is

then passed to the frontier exploration algorithm.

In order to determine the pose of all AprilTags in the

environment, the system runs the apriltag_ros package [4]

while the Turtlebot explores. The apriltag_ros package

analyzes image data from the camera to detect AprilTags,

estimating and publishing that tag’s pose relative to the

camera frame. A custom node then receives this pose

information. This node determines if a pose estimation is

valid based on distance and deviation from the camera’s z-

axis and calculates the average pose over all previous valid

pose estimates for the same tag after transforming them to the

world frame. The average pose for each tag is then sent to

ROS’ TF tree.

B. Design Rationale

Initially, the gmapping SLAM package was used to

generate the occupancy grid, but later it was switched over to

Slam Toolbox to address some issues. The gmapping-

generated occupancy grid would occasionally make explore-

lite set inaccessible goals. This would cause the turtlebot to

stop exploring despite explore_lite being configured to

choose a new goal if no progress is made for a period of time.

Slam Toolbox does not have this issue and its more complex

loop closure behavior makes the map more globally accurate.

Slam Toolbox also provides more configuration and

parameter options than gmapping. Some examples being the

ability to change the details of the solver used for loop closure

and the option to run in a “lifelong” mode designed to operate

over very large spaces for an extended period of time. These

options initially caused issues with the performance of the

SLAM algorithm, such as “lifelong” mode eliminating too

much information due to similar environmental features and

generating warped occupancy grids, but after enough

tweaking produced a superior result. Ultimately, it was found

that the “online sync” mode of the Slam Toolbox performed

the best for our purposes.

If the greedy frontier exploration algorithm from the

explore_lite package directly utilized the occupancy grid

generated based on the 360-degree LiDAR, its exploration of

the environment would only ensure the entire map has been

seen by the LiDAR. This does not guarantee the camera has

seen the entire environment and thus risks potentially missing

AprilTags. However, discarding information from the scan to

match the camera would severely impact the performance of

both localization and move_base’s planning algorithm. Thus,

it is proposed to utilize the aformentioned mask before

passing the occupancy grid to the exploration algorithm. The

mask ensures that the exploration algorithm only marks areas

seen by the camera as explored while not detrimentally

influencing other parts of the system that utilize the base

occupancy grid. With this modification, the frontier

exploration behavior provided by the explore_lite package

was sufficient. While explore_lite is not optimized to

maximize the amount of the map seen by the camera, the

mask ensures that exploration will continue until the camera

has seen the entire map and the Turtlebot tends to prefer

moving towards a goal such that the camera is facing forward.

Therefore, the Turtlebot should eventually see the entire map

with the camera.

Additionally, move_base offered all the functionality

necessary for a path planner. As long as target goals were

correctly specified and an accurate occupancy grid is

constructed, move_base would typically behave as intended.

The proposed system seeks to average the pose estimates

for each tag instead of just sending the outputs of the

apriltag_ros package, which addresses a couple major issues.

The first issue is that upon the system detecting a specific tag

in an image, the existing package completely overwrites the

previous pose estimation with the new one found from the

current image. As a result, each pose estimation of the base

system only uses the information from a single image to

evaluate a tag’s pose. Furthermore, the AprilTag 2 algorithm

used by the package becomes more inaccurate with

increasing distance and increasing deviation from the

camera’s central axis [4], especially the latter. This

compounds the previous issue due to the last detection of a

tag having an increased likelihood of being when the tag

leaves the camera’s field of view. Therefore, it seems a better

approach to average the pose estimates to obtain a more

accurate evaluation of the pose that wasn’t reliant on data

from a single image. Furthermore, an additional design

approach was adopted where the system discards any pose

estimates that fell outside the range of optimal measurements

that has been pre-defined.

III. RESULTS

A. Testing Environment

Fig 1. View of the testing environment from the Turtlebot

A good design also requires an appropriate test to show
whether the design is actually working with a great level of
accuracy. A mechanical engineering lab was used to create a
test environment for the Turtlebot. The size of the
configuration space was around 40 ft by 20 ft and contained 3
big tables and two trash cans as obstacles. These obstacles
were kept in the middle of the lab with a good amount of
vacant spaces between them and other obstacles were kept
along the walls of the lab. A total of six AprilTags with
different ID numbers were used to simulate disaster victims.
Five AprilTags were placed on the walls around the lab, and
one was stuck on one of the obstacles. The AprilTags were
placed at different heights ranging from 10 inches to 20 inches
from bottom of wall. To make the test environment more
realistic, one AprilTag was placed on the wall and the line of
sight to the tag was obstructed by a trash can placed just 1 foot
away from the tag, while another AprilTag was placed under
one of the tables and stuck near the leg of the table.

B. Occupancy Grid Map

To determine the effectiveness of this system, a

benchmark analysis was performed between a system created

from only off-the-shelf components and our modified system.

The off-the-shelf system refers to the system which uses

gmapping and explore_lite as configured by the Turtlebot3

SLAM package and the base apriltag_ros package. The

modified system is using SLAM Toolbox instead of

gmapping, a masked occupancy grid to feed into explore_lite

for frontier exploration, and a custom node to average

AprilTag detections.

The gmapping-generated occupancy grid map (shown in

Fig 2) has marked some spaces behind walls as both

unoccupied space and on a frontier which explore-lite would

potentially set as a goal, even though it is impossible for

move_base to navigate to that space. This often caused the

Turtlebot to stop exploring despite explore-lite being

configured to choose a new goal if no progress is made for 30

seconds. Also, the features in the map are not super clear and

shadowed areas can be seen where the Turtlebot’s camera has

not viewed. On other hand, Slam Toolbox creates much more

defined wall boundaries, and its more complex loop closure

behavior makes the map more accurate as shown in Fig 3.

The features in the map look clearer with more detailed

definitions of their boundaries. There were also few shadow

spots which shows the modified system explored all the

spaces present in the test environment. The few spots in

shadow would have been explored with more time, as shown

by the Turtlebot navigating to one in Fig 3.

Fig 2. Map generated with off-the-shelves configuration

Fig 3. Map with tuned SLAM and frontier exploration

C. Detected AprilTags

The off-the-shelf system uses the base level apriltag_ros

package to detect AprilTags, whereas the modified system

additionally performs averaging of the detected pose

estimates to increase the accuracy of the pose on the

occupancy grid map. It can be seen on Fig 2 that some

AprilTag poses are marked out of the map, and some poses

are marked far off of the real position in the test environment.

However, the occupancy grid map generated by the modified

system in Fig 3 shows a near-perfect detection of all the

AprilTags with their poses on the map.

IV. CONCLUSION

Disaster response scenarios present a challenge in which
responders may have to endanger themselves to locate
victims. This is where an autonomous system becomes very
useful, as information can be gathered about an environment
without endangering rescue teams. Our proposed system uses
a Turtlebot3 Burger equipped with a camera and LiDAR along
with software components used for exploration, SLAM,
navigation, and detection of victims. The system used SLAM

Toolbox for SLAM operations, explore_lite for frontier
exploration, move_base for navigation, and apriltag_ros for
AprilTag detection. The system also used custom
configurations and software to better adapt the system to the
task at hand (e.g., the agglomeration of AprilTag poses or the
generation of a masked occupancy grid map). In the end, the
proposed system does very well against the benchmark
created using only off-the-shelf components (i.e., no custom
configurations or software). The proposed system creates a
more accurate map of the environment and estimates the poses
of “victims” more accurately as well. In all, the proposed
system would be a valuable asset in a search and rescue
scenario.

V. FUTURE WORK

The modified design worked very well in exploring a

simulated lab space and detecting AprilTags. However, the

system design could still be further refined to more accurately

locate and pinpoint victims (AprilTags). The main idea that

was proposed to accomplish this was to design a way for the

robot to orient itself in a more optimal position, or a series of

optimal positions, that would allow for it to better record the

pose of the AprilTag.

As the system stands, the robot will search the

environment and attempt to scan the whole map with its

camera. This ensures that the robot sees everything in the

environment. However, this does not ensure that the robot

will have been in an optimal position to record the pose of an

AprilTag; it just ensures that it has seen every AprilTag at

least once.

The proposed solution to this problem is to create an

intermediary node that would listen to explore_lite and

move_base and forward the proper messages to either node

(e.g, goals, results, etc). If no AprilTag has been seen, goals

from explore_lite will continue to be sent to move_base and

the system will persist as if nothing had changed. Once an

AprilTag is detected from the camera, however, the node

would determine optimal positions for viewing and recording

the location of the AprilTag. It would then stop sending goals

from explore_lite to move_base and instead send move_base

the optimal positions as goals. It would continue to do this

until there are no more entries in its queue of optimal

positions. Lastly, it would mark the AprilTag as fully

explored so that it will know it does not need to explore it

again the next time it sees the tag. After all of this, the node

would resume communication between explore_lite and

move_base until it sees another tag or finishes exploring the

environment.

This solution would allow for a more accurate recording

of AprilTag locations. However, as the system stands, the

robot will likely find itself in many valid locations to record

the AprilTag, and it will agglomerate all of the recordings, so

it will already get a decently accurate recording of the

location of the AprilTag. This solution would become useful

if the robot happens to see an AprilTag from far away and

never needs to move closer to it in order to complete its

exploration. With the proposed solution, it will actively try

to get a better reading regardless of if it has explored that

portion of the environment or not.

VI. REFERENCES

[1] "move_base," [Online]. Available:

http://wiki.ros.org/move_base. [Accessed 2022].

[2] S. Macenski, "SLAM Toolbox: SLAM for the dynamic

world," Journal of Open Source Software, 2021.

[3] J. Hörner, "Map-merging for multi-robot system,"

2016.

[4] "AprilTag 2: Efficient and robust fiducial detection," in

2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), IEEE, 2016, pp. 4193-

4198.

[5] S. M. a. A. S. a. B. K. a. M. A. Abbas, "Analysis and

Improvements in AprilTag Based State Estimation,"

Sensors, vol. 19, 2019.

